109 research outputs found

    Temporal dynamics of cerebellar and motor cortex physiological processes during motor skill learning

    Get PDF
    Learning motor tasks involves distinct physiological processes in the cerebellum (CB) and primary motor cortex (M1). Previous studies have shown that motor learning results in at least two important neurophysiological changes: modulation of cerebellar output mediated in-part by long-term depression of parallel fiber-Purkinje cell synapse and induction of long-term plasticity (LTP) in M1, leading to transient occlusion of additional LTP-like plasticity. However, little is known about the temporal dynamics of these two physiological mechanisms during motor skill learning. Here we use non-invasive brain stimulation to explore CB and M1 mechanisms during early and late motor skill learning in humans. We predicted that early skill acquisition would be proportional to cerebellar excitability (CBI) changes, whereas later stages of learning will result in M1 LTP-like plasticity modifications. We found that early, and not late into skill training, CBI changed. Whereas, occlusion of LTP-like plasticity over M1 occurred only during late, but not early training. These findings indicate a distinct temporal dissociation in the physiological role of the CB and M1 when learning a novel skill. Understanding the role and temporal dynamics of different brain regions during motor learning is critical to device optimal interventions to augment learning

    Multiple Motor Learning Processes in Humans: Defining Their Neurophysiological Bases

    Get PDF
    Learning new motor behaviors or adjusting previously learned actions to account for dynamic changes in our environment requires the operation of multiple distinct motor learning processes, which rely on different neuronal substrates. For instance, humans are capable of acquiring new motor patterns via the formation of internal model representations of the movement dynamics and through positive reinforcement. In this review, we will discuss how changes in human physiological markers, assessed with noninvasive brain stimulation techniques from distinct brain regions, can be utilized to provide insights toward the distinct learning processes underlying motor learning. We will summarize the findings from several behavioral and neurophysiological studies that have made efforts to understand how distinct processes contribute to and interact when learning new motor behaviors. In particular, we will extensively review two types of behavioral processes described in human sensorimotor learning: (1) a recalibration process of a previously learned movement and (2) acquiring an entirely new motor control policy, such as learning to play an instrument. The selected studies will demonstrate in-detail how distinct physiological mechanisms contributions change depending on the time course of learning and the type of behaviors being learned

    Cerebellar–M1 connectivity changes associated with motor learning are somatotopic specific

    Get PDF
    One of the functions of the cerebellum in motor learning is to predict and account for systematic changes to the body or environment. This form of adaptive learning is mediated by plastic changes occurring within the cerebellar cortex. The strength of cerebellar-to-cerebral pathways for a given muscle may reflect aspects of cerebellum-dependent motor adaptation. These connections with motor cortex (M1) can be estimated as cerebellar inhibition (CBI): a conditioning pulse of transcranial magnetic stimulation delivered to the cerebellum before a test pulse over motor cortex. Previously, we have demonstrated that changes in CBI for a given muscle representation correlate with learning a motor adaptation task with the involved limb. However, the specificity of these effects is unknown. Here, we investigated whether CBI changes in humans are somatotopy specific and how they relate to motor adaptation. We found that learning a visuomotor rotation task with the right hand changed CBI, not only for the involved first dorsal interosseous of the right hand, but also for an uninvolved right leg muscle, the tibialis anterior, likely related to inter-effector transfer of learning. In two follow-up experiments, we investigated whether the preparation of a simple hand or leg movement would produce a somatotopy-specific modulation of CBI. We found that CBI changes only for the effector involved in the movement. These results indicate that learning-related changes in cerebellar– M1 connectivity reflect a somatotopy-specific interaction. Modulation of this pathway is also present in the context of interlimb transfer of learning

    A FLAMINGOS Deep Near Infrared Imaging Survey of the Rosette Complex I: Identification and Distribution of the Embedded Population

    Full text link
    We present the results of a deep near-infrared imaging survey of the Rosette Complex. We studied the distribution of young embedded sources using a variation of the Nearest Neighbor Method applied to a carefully selected sample of near-infrared excess (NIRX) stars which trace the latest episode of star formation in the complex. Our analysis confirmed the existence of seven clusters previously detected in the molecular cloud, and identified four more clusters across the complex. We determined that 60% of the young stars in the complex and 86% of the stars within the molecular cloud are contained in clusters, implying that the majority of stars in the Rosette formed in embedded clusters. We compare the sizes, infrared excess fractions and average extinction towards individual clusters to investigate their early evolution and expansion. We found that the average infrared excess fraction of clusters increases as a function of distance from NGC 2244, implying a temporal sequence of star formation across the complex. This sequence appears to be primordial, possibly resulting from the formation and evolution of the molecular cloud and not from the interaction with the HII region.Comment: Accepted by Astrophysical Journa

    Laterality Differences in Cerebellar-Motor Cortex Connectivity

    Get PDF
    Lateralization of function is an important organizational feature of the motor system. Each effector is predominantly controlled by the contralateral cerebral cortex and the ipsilateral cerebellum. Transcranial magnetic stimulation studies have revealed hemispheric differences in the stimulation strength required to evoke a muscle response from the primary motor cortex (M1), with the dominant hemisphere typically requiring less stimulation than the nondominant. The current study assessed whether the strength of the connection between the cerebellum and M1 (CB-M1), known to change in association with motor learning, have hemispheric differences and whether these differences have any behavioral correlate. We observed, in right-handed individuals, that the connection between the right cerebellum and left M1 is typically stronger than the contralateral network. Behaviorally, we detected no lateralized learning processes, though we did find a significant effect on the amplitude of reaching movements across hands. Furthermore, we observed that the strength of the CB-M1 connection is correlated with the amplitude variability of reaching movements, a measure of movement precision, where stronger connectivity was associated with better precision. These findings indicate that lateralization in the motor system is present beyond the primary motor cortex, and points to an association between cerebellar M1 connectivity and movement execution

    Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy

    Get PDF
    The cerebellum is involved in the update of motor commands during error-dependent learning. Transcranial direct current stimulation (tDCS), a form of noninvasive brain stimulation, has been shown to increase cerebellar excitability and improve learning in motor adaptation tasks. Although cerebellar involvement has been clearly demonstrated in adaptation paradigms, a type of task that heavily relies on error-dependent motor learning mechanisms, its role during motor skill learning, a behavior that likely involves errordependent as well as reinforcement and strategic mechanisms, is not completely understood. Here, in humans, we delivered cerebellar tDCS to modulate its activity during novel motor skill training over the course of 3 d and assessed gains during training (on-line effects), between days (off-line effects), and overall improvement. We found that excitatory anodal tDCS applied over the cerebellum increased skill learning relative to sham and cathodal tDCS specifically by increasing on-line rather than off-line learning. Moreover, the larger skill improvement in the anodal group was predominantly mediated by reductions in error rate rather than changes in movement time. These results have important implications for using cerebellar tDCS as an intervention to speed up motor skill acquisition and to improve motor skill accuracy, as well as to further our understanding of cerebellar function

    The dark matter halo shape of edge-on disk galaxies - I. HI observations

    Get PDF
    This is the first paper of a series in which we will attempt to put constraints on the flattening of dark halos in disk galaxies. We observe for this purpose the HI in edge-on galaxies, where it is in principle possible to measure the force field in the halo vertically and radially from gas layer flaring and rotation curve decomposition respectively. In this paper, we define a sample of 8 HI-rich late-type galaxies suitable for this purpose and present the HI observations.Comment: Accepted for publication by Astronomy & Astrophysics. For a higher resolution version see http://www.astro.rug.nl/~vdkruit/jea3/homepage/12565.pd

    Consensus Paper: Neurophysiological Assessments of Ataxias in Daily Practice

    Full text link
    The purpose of this consensus paper is to review electrophysiological abnormalities and to provide a guideline of neurophysiological assessments in cerebellar ataxias. All authors agree that standard electrophysiological methods should be systematically applied in all cases of ataxia to reveal accompanying peripheral neuropathy, the involvement of the dorsal columns, pyramidal tracts and the brainstem. Electroencephalography should also be considered, although findings are frequently non-specific. Electrophysiology helps define the neuronal systems affected by the disease in an individual patient and to understand the phenotypes of the different types of ataxia on a more general level. As yet, there is no established electrophysiological measure which is sensitive and specific of cerebellar dysfunction in ataxias. The authors agree that cerebellar brain inhibition (CBI), which is based on a paired-pulse transcranial magnetic stimulation (TMS) paradigm assessing cerebellar-cortical connectivity, is likely a useful measure of cerebellar function. Although its role in the investigation and diagnoses of different types of ataxias is unclear, it will be of interest to study its utility in this type of conditions. The authors agree that detailed clinical examination reveals core features of ataxia (i.e., dysarthria, truncal, gait and limb ataxia, oculomotor dysfunction) and is sufficient for formulating a differential diagnosis. Clinical assessment of oculomotor function, especially saccades and the vestibulo-ocular reflex (VOR) which are most easily examined both at the bedside and with quantitative testing techniques, is of particular help for differential diagnosis in many cases. Pure clinical measures, however, are not sensitive enough to reveal minute fluctuations or early treatment response as most relevant for pre-clinical stages of disease which might be amenable to study in future intervention trials. The authors agree that quantitative measures of ataxia are desirable as biomarkers. Methods are discussed that allow quantification of ataxia in laboratory as well as in clinical and real-life settings, for instance at the patients' home. Future studies are needed to demonstrate their usefulness as biomarkers in pharmaceutical or rehabilitation trials

    Ten Million Degree Gas in M 17 and the Rosette Nebula: X-ray Flows in Galactic H II Regions

    Full text link
    We present the first high-spatial-resolution X-ray images of two high-mass star forming regions, the Omega Nebula (M 17) and the Rosette Nebula (NGC 2237--2246), obtained with the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer (ACIS) instrument. The massive clusters powering these H II regions are resolved at the arcsecond level into >900 (M 17) and >300 (Rosette) stellar sources similar to those seen in closer young stellar clusters. However, we also detect soft diffuse X-ray emission on parsec scales that is spatially and spectrally distinct from the point source population. The diffuse emission has luminosity L_x ~ 3.4e33 ergs/s in M~17 with plasma energy components at kT ~0.13 and ~0.6 keV (1.5 and 7 MK), while in Rosette it has L_x \~6e32 ergs/s with plasma energy components at kT ~0.06 and ~0.8 keV (0.7 and 9 MK). This extended emission most likely arises from the fast O-star winds thermalized either by wind-wind collisions or by a termination shock against the surrounding media. We establish that only a small portion of the wind energy and mass appears in the observed diffuse X-ray plasma; in these blister H II regions, we suspect that most of it flows without cooling into the low-density interstellar medium. These data provide compelling observational evidence that strong wind shocks are present in H II regions.Comment: 35 pages, including 11 figures; to appear in ApJ, August 20, 2003. A version with high-resolution figures is available at ftp://ftp.astro.psu.edu/pub/townsley/diffuse.ps.g

    Turbulent Gas Flows in the Rosette and G216-2.5 Molecular Clouds: Assessing Turbulent Fragmentation Descriptions of Star Formation

    Full text link
    The role of turbulent fragmentation in regulating the efficiency of star formation in interstellar clouds is examined from new wide field imaging of 12CO and 13CO J=1-0 emission from the Rosette and G216-2.5 molecular clouds. The Rosette molecular cloud is a typical star forming giant molecular cloud and G215-2.5 is a massive molecular cloud with no OB stars and very little low mass star formation. The properties of the turbulent gas flow are derived from the set of eigenvectors and eigenimages generated by Principal Component Analysis of the spectroscopic data cubes. While the two clouds represent quite divergent states of star formation activity, the velocity structure functions for both clouds are similar. The sonic scale, lambda_S, defined as the spatial scale at which turbulent velocity fluctuations are equivalent to the local sound speed, and the turbulent Mach number evaluated at 1 pc, M_{1pc}, are derived for an ensemble of clouds including the Rosette and, G216-2.5 regions that span a large range in star formation activity. We find no evidence for the positive correlations between these quantities and the star formation efficiency, that are predicted by turbulent fragmentation models. A correlation does exist between the star formation efficiency and the sonic scale for a subset of clouds with L_{FIR}/M(H_2) > 1 that are generating young stellar clusters. Turbulent fragmentation must play a limited and non-exclusive role in determining the yield of stellar masses within interstellar clouds.Comment: Accepted by ApJ, 22 pages, 7 figure
    • 

    corecore